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a b s t r a c t

The Parker Turner cave diving accident was unique. Out of several hundred cave diving fatalities that
occurred in Florida during the past 50 years, it is the only one that occurred due to a partial collapse
of the cave. Here, we propose a natural physical process that might explain this unique accident.

While it is possible that the presence of the divers in the cave while the cave collapsed just happened to
occur simultaneously, this is unlikely. It is suggested here that resonance in the air pockets in the cavern
(or cave), created by breathing (open circuit) divers, may have contributed to the collapse. We propose
that divers present in the cavern during the dive may have (unknowingly) caused the collapse through
the pressurized air that they release with each breath. When the breathing period of the diver(s) matches
the natural oscillations period of our new ‘‘cave oscillator”, the ensuing resonance causes the air pressure
in the pockets to increase uncontrollably.

We model the system as a non-uniform U-tube filled with water on the bottom and compressed air on
top. The top of the tube is sealed on both sides so that the compressed air is trapped in the chambers
above the water. The bottom part of the tube represents the water filled cavern (or cave) whereas the
vertical tubes represent the air cavities. We show analytically that such a system is subject to natural
oscillations with a period of roughly the same as the breathing rate of the typical diver.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction porous limestone that dissolves in freshwater, forming a ‘‘cheese-
Indian Spring (latitude 30� 15.082, and longitude 84� 19.317) is
a fresh water spring located in Wakulla County, Florida (Figs. 1 and
2). It is part of a hidden underworld known as the Woodville Karst
Plain that stretches over 1000 square kilometers from just south of
Tallahassee into the Gulf of Mexico. The region covers the longest
known underwater cave system in the United States (�30 km). In-
dian Spring cave is approximately 30 m deep and its length is un-
known; a combined distance of about 3 km has been surveyed (by
divers) upstream and downstream of the cave. The spring ‘‘run”
(i.e., the part of the flow that is above ground) flows for about a
kilometer southeast and empties into Sally Ward Spring at the
headwaters of the Wakulla River. The Indian spring discharge is
highly variable but is estimated to be several cubic meters per sec-
ond (see e.g., Schmidt (2004) for a description of regional springs).

Like most Florida springs, Indian Spring contains a cavern (de-
fined as the portion of the cave that is usually reached by sunlight)
and a cave (defined as a narrow lightless tube) and Fig. 3 displays a
typical cross section of such a cave. The Florida aquifer consists of
ll rights reserved.
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like” medium. Part of the medium is just like any other porous
media but, unlike the familiar porous mediums, tubes and tunnels
are embedded in it. The typical cave usually ‘‘snakes” around leav-
ing concave portions that often contain pockets of compressed air
released by cave divers. Cave divers typically use breathing gas
mixtures different from air but, for the sake of simplicity, we will
use the term ‘‘gas” or ‘‘air” interchangeably for the various gaseous
mixture. An interesting related question that comes immediately
to mind is whether the composition of the exhaled breathing gas
affects the limestone in the air pockets to the extend that regular,
frequent diving weaken the limestone in these concave areas and
increase the risk of collapse. We do not know how to estimate this
possibility with the tools that we presently have.

Very strong flows occasionally flush the pockets out but new
ones are formed when the flow subsides. Also, in most caves, the
gas in the pockets gradually percolates upward through the porous
limestone. Despite both processes, however, gas pockets are found
in most cave dives indicating that they are present most of the
time. Although we shall focus on Indian Springs where the partic-
ular accident in question occurred, the conditions in that cave as
well as its structure are not that unique. The resonance that we
propose may well also apply to other caves in limestone (e.g., aqui-
fers in Florida, the Yucatan and the Karst regions in central Europe),
ice caves, and perhaps even wrecks.
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Fig. 1. A map of the southeastern United States showing the location of the water-filled Indian Spring cave. The cave spring water, which flows at a speed �O(0.1 m/s) within
the cave, ultimately ends up in the spring pool which eventually empties into the Wakulla river. Figure adapted from larger NASA (http://visibleearth.nasa.gov/
view_rec.php?id=2408) and Labins (http://data.labins.org) website maps.

Fig. 2. A schematic three-dimensional view of the Indian Spring cave. The cave walls, ceiling and floor are all shown with the red envelope. Limestone is outside that envelope
whereas water occupies the inside of the envelop (the cave). Our proposed collapse mechanism involves resonance in the region downstream to the Squaws Restriction. That
resonance increased the pressure in divers-induced air pockets (in the cavern region) beyond the level that which the cavern’s ceiling could sustain. As a result, part of the
ceiling fell on the steeply sloped sediment, which, in turn, slid and blocked the Squaws Restriction (see Figs. 3–5). Figure created by Conn & Associates Architects, Inc.,
Tallahassee, FL. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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What is reported here is what one may term ‘‘forensic environ-
mental fluid dynamics”, which is a blend of forensic study and an
investigation of the fluids stability within the cave. This is not a
forensic study per se, however, because: (i) the emphasis here is
on the stability of the fluid system, and (ii) much of the accident
reporting is anecdotal. We attempted to be much more quantita-
tive with regard to item (ii) above. However, the event has been
very traumatic to many of those involved and has generated much
friction among them. As a result, some have quit cave diving all to-
gether and those who did not quit do not wish to speak about it. So
much so, that all of our continuous and persistent requests to
speak about the accident to those that were present in the cave
and cavern fell on deaf ears. This unfortunate (but understandable)
situation results from the fact that the agencies associated with
cave diving (e.g., NSS-CDS, the National Speological Society-Cave
Diving section, and the NACD, the National Association of Cave Di-
vers) are self-regulated, so that there is no means to force individ-
uals to speak about this, or any other case.

To put things in perspective, it is appropriate to point out here
that there are other branches of society, such as the military and
the police, which regularly encounter similar, if not more tragic,
events and, yet, cannot choose to avoid speaking about the issues.
These branches are, of course, not self-regulated but rather are reg-
ulated by the corresponding governing agencies. As a result, acci-
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Fig. 3. A close-up map of the entrance to the Indian Springs cave system and the first few hundred meters. Depth is given in meters. The passage that was blocked during the
event in question is marked as Squaws Restriction (sr). It is situated about 70 m to the right of the entrance from the Surface Pool (to the cavern) and is roughly 40 m deep.
(Map adapted with permission from a larger, National Speleological Society map.)
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dents are more rigorously investigated, no participant can avoid
speaking about a case and, consequently, there is probably a much
better understanding of accidents and how to avoid them.

1.1. The event

The accident in question occurred in 1991 prior to the establish-
ment of the International Underwater Cave Rescue and Recovery
(IUCRR, www.iucrr.org) so there is no official analysis available to
the public other than the original report written by Gavin (1991),
some of which is summarized below in the next two paragraphs.

The dive was the first in a series of planned exploration dives.
The dive plan consisted of a 40 min transit at a depth of no more
than 45 m while breathing an EAN 27 travel mix (27% oxygen in-
stead of the normal 21%), a descent and exploration to no more
than 90 m using trimix 14/44 (14% O2, 44% He, balance N2), fol-
lowed by a return 40 min transit to exit the cave. The 90 m deep
working phase of the dive was expected to last 20–25 min. The
45 m penetration and exit was done using two ‘‘stage” bottles
(i.e., bottles that were carried by the divers merely for the entrance
and exit and were left behind when not in use), whereas the 90 m
deep portion was accomplished using back mounted doubles.

The dive went almost exactly according to plan during the pen-
etration. Bill Gavin and Parker Turner began their exit at 63 min
into the dive. They reached their staged nitrox bottles in 2–
3 min, began breathing them, and did not use their back mounted
doubles again until they later encountered the obstruction that
caused the accident at what is known as the ‘‘Squaws Restriction”
(Figs. 2 and 3). There was a distinctive arrow marker at the up-
stream/downstream junction, which is about 150 m from the en-
trance. As this arrow came into view, they estimated that their
bottom time was going to be somewhere between 105 and
110 min. They made the left turn at this arrow and immediately
noticed that the visibility in the cave had decreased. The floor
was completely obscured by billowing clouds of silt, but the line
was still in clear water near the ceiling. As they got closer and clo-
ser to the entrance, the visibility became progressively worse. Fi-
nally, they had to stop using the diving propulsion vehicles
(DPVs) and swam while maintaining physical line contact.

When they arrived to the point where the restriction should
have been, the line disappeared into the sand on the bottom of
the cave. They attempted to pull the line out of the sand, but
reached a point where it was buried too deep. Visibility in this area
at that time was 30 cm or less. Closer to the exit there were two
lines running parallel in the cave. They tried following both of
them, but each time reached a point where the line could not be
pulled out of the sand that had covered it. Ultimately, Gavin some-
how managed to exit the blocked cave by removing debris and
pulling himself out but Parker run out of gas and drowned. (By
the time that he was out of the cave, Gavin had almost no gas left
in his tanks.) This is the description of the accident according to
Gavin.

There are numerous blogs that discuss the case primarily be-
cause it is so unique. Bill Gavin also wrote one of these interesting
blogs. In that blog he stated his suspicion that divers present in the
cavern (not cave) might have inadvertently caused the collapse and
associated mudslide that blocked the exit. His reasoning was that,
otherwise, the chance that such a collapse would occur exactly at
the same time that the divers were in the cave is miniscule. Here,
we place his suspicion on a firmer ground by suggesting an actual
physical process (‘‘cave resonance”) that could lead to such an
outcome.

As is typical with issues of such nature, there is variability in the
anecdotal descriptions of what actually happened even among
those that were present in the cavern when the incident occurred.
Among those descriptions, there is one alluding to exhaust bubbles
released by divers decompressing in the cavern (for decompression
issues see e.g., Wienke, 1991, 1992, 2009). According to this
description, the resulting bubbles dislodged a large amount of sed-
iment up in one of the solution tubes next to the ceiling, which cas-

http://www.iucrr.org


Fig. 4. A cross-section of a typical submerged cavern with an attached cave in a karst aquifer. This is the general structure of a submerged cave in Florida, not necessarily of
the Indian Spring cave, which is shown in Fig. 3. Note the air pockets near the ceiling of the cavern.

Fig. 5. Schematic diagram of our proposed cave collapse process in Indian Spring, Florida. While two divers were still in the cave beyond what is marked in Figs. 2 and 3 as the
Squaws Restriction (sr) passage (lower right in this figure), divers in the cavern (upper left) generate resonance in the air pockets above them. This causes the fall-out of
broken rock from the ceiling onto the steeply sloping sediment on the bottom (slope > 1:2). In turn, this impact generates a mud and sediment slide that rushes to the right
and blocks the passage.
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caded down onto the sediment slope, causing it to slump and plug
the Squaws Restriction situated downhill (Fig. 3). One person de-
scribed it as if it ‘‘looked like someone emptying a trash dumpster
from the ceiling”, and continued until the visibility was obscured in
the basin. As we shall see, this fits very well with the resonance
mechanism that we propose here (Figs. 4–6). It is worth mention-
ing here in passing that a large-scale avalanche of sediment result-
ing from a weight dropped on the sediment slope (leading to the
cave) during the US Cave Expedition of the Wakulla Springs in
the late 1980’s was reported by Stone (Stanton, personal commu-
nication). A similar event resulting from divers digging for art ef-
fects is described in Burgess (1999). Wally Jenkins also reported
a similar event associated with dropping heavy objects on the
slope within the Wakulla in the late 1950s. Next, we shall briefly
review the ideas behind some well-known cases of resonance,
which will serve as an introduction to the new resonant case pre-
sented here.
1.2. Resonance

Many processes in nature are subject to resonance. The simplest
case is that of a swing, which goes higher and higher when pushed
at the right frequency. Another example is that of a tidal resonance,
which occurs when the tide excites one of the resonant modes of
the ocean. The effect is most striking when a continental shelf is
about a quarter wavelength wide. Then an incident tidal wave
can be reinforced by reflections between the coast and the shelf
edge, producing a much higher tidal range at the coast (e.g., Gar-
rett, 1972). Famous examples of this effect are the Bay of Fundy,
where the world’s highest tides are found, and the Bristol Channel.
Large tides due to resonances are also found on the Patagonian
Shelf and on the N.W. Australian continental shelf.

In mechanics and construction, a resonance disaster describes
the destruction of a building or a technical mechanism by induced
vibrations at a system’s resonance frequency, which causes it to



Fig. 6. The simplified U-tube model. The horizontal distance between the vertical
components of the tube is Lhw, the length of the vertical compressed-gas-filled tube
is Lva and the length of the vertical water-filled portion of the tube is Lvw. The air
chambers pressure is P̂; Da and Dw are the diameters of the vertical and horizontal
components. In most realistic situations Dw� Da but this condition is not necessary
for the calculation.
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oscillate. Periodic excitation optimally transfers to the system the
energy of the vibration and stores it there. Because of this repeated
storage and additional energy input the system swings ever more
strongly, until its load limit is exceeded. The dramatic, rhythmic
twisting that resulted in the 1940 collapse of ‘‘Galloping Gertie,”
the original Tacoma Narrows Bridge, is sometimes characterized
as a classic example of resonance; however, this description maybe
misleading. The catastrophic vibrations that destroyed the bridge
were probably not only due to simple mechanical resonance, but
due to a more complicated oscillation caused by interactions be-
tween the bridge and the winds passing through its structure – a
phenomenon known as aeroelastic flutter (see e.g., Jain et al.,
1996). There is also an interesting aircraft resonance case involving
runway smoothness (and its associated wavelength) resonating
with the length of the aircraft. For other issues involving resonance
the reader is referred to: Alex and Craik (1971), Alexeev and Gut-
finger (2003), Chester (1964), and Goldshtein et al. (1996). These
articles do not, by any means, summarize what is known on the
subject but they do provide some additional information.

1.3. Content

This paper is organized as follows. In Section 2 we present the
new model and its governing equation. The inviscid oscillatory
and resonating solution to the new physical system that we con-
sider is given in Section 3. In Sections 4 and 5 we present the deep
cave limit and the highly viscous limit. A generalized solution that
includes some frictional representation is discussed in Section 6. A
discussion and summary are given in Section 7.

2. Model and governing equation

Consider the U-tube shown in Fig. 6. In contrast to the classical
U-tube problem, our new resonant problem contains two narrow
vertical tubes capped at their tops, which represents the upper re-
gions of the cave where the compressed air accumulates. Their
diameter is Da, their corresponding cross-sectional area is Aa, their
total length is Lv, and the lengths of their components that are filled
with air and water (respectively) are Lva and Lvw, respectively. The
thick horizontal tube (below) representing the cave (or cavern) has
a diameter Dw, much larger than that of the vertical tube Da, and a
length Lhw. The tubes diameter ratio represents the actual situation
in nature but, as it turns out, it has no bearing on the calculations
presented here. The corresponding cross-sectional area of the ver-
tical tube is Aw and its wet length is Lhw. The excess pressure (i.e.,
the pressure above the atmospheric pressure) in the air-filled com-
ponents depends on the cave’s depth and is denoted by P̂.

This new U-tube model is adopted as a means of representing
resonating flows that are superimposed on the usual one-dimen-
sional (horizontal) flow in the cave. This modeled resonating flow,
which is induced by the air pockets, is limited to the region be-
tween the pockets, so the lower part of the modeled tube is taken
to be blocked on the two sides, forming a U-tube.

When the water level in the right vertical tube (shown in Fig. 6)
is elevated an arbitrary infinitesimal distance g above its neutral
position there are two restoring forces. The first is the familiar
weight of the displaced water qwgAag, where qw is the water den-
sity. The second is the new not-so-familiar force due to the incre-
mental increased pressure in the air-filled section, P̂g=Lva (derived
from the linear gas law, P̂V̂ ¼ const:, where V̂ is the volume of the
air pocket). Fortunately, this new force (i.e., the incremental in-
creased pressure times the cross-sectional area Aa) turns out to
be linear. In the absence of friction (i.e., the inviscid limit), the
sum of these two forces causes the fluid to accelerate (in both
the horizontal and vertical tubes) in response to the initial pertur-
bation (e.g., increase) of the water level in the right vertical tube.

In the vertical tubes the (time-dependent) acceleration is d2g/
dt2. Conservation of mass implies that in the horizontal tube the
acceleration is much smaller, (d2g/dt2)Aa/Aw, because the velocity,
dg/dt, is also much smaller [(dg/dt)Aa/Aw since the mass flux has
to be the same in horizontal and vertical tubes]. Assuming that
the fluid velocities are uniform within each cross-section and
neglecting the corners of the U-tube, the inviscid governing equa-
tion (F = ma) can be written as,

qAaðLvw þ LhwÞ
d2g
dt2 þ ð2qgAa þ 2P̂Aa=LvaÞg

¼ C1 cos xt þ C2 sin xt: ð1Þ

Here, the first term on the left hand side corresponds to the
familiar acceleration of the water in both the narrow and thick seg-
ments of the U-tube. Interestingly, it turns out to be independent of
the cross-sectional area of the thick tube, Aw, because, although the
cross-sectional area is large there, the velocity there, Aa

Aw
ðdg=dtÞ, is

small so it compensates for the increase in mass associated with
the increase in area. (This implies the counter intuitive result that
the ratio of the tubes diameters does not enter the problem.) The
second term is the restoring force, which now consists of both
the familiar gravitational pull and the new not-previously dis-
cussed force associated with the compressed air in the pockets.
Luckily, this new term is linear. The terms on the right hand side
represent the (known) periodic forcing associated with divers
releasing air that further accumulates in the closed sections of
the tube. (Given the concave nature of the cave’s ceiling, this addi-
tional air does not have to be released directly into the air cham-
bers. For most caves, air released nearby will slide along the
slanted ceiling and will ultimately reach the highest point repre-
senting the top of the tubes.) When the terms on the right hand
side are zero, the solution of (1) is a harmonic oscillations solution.
We shall refer to this state as the ‘‘free state” as it is not subject to
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any outside forcing. Interestingly, the inclusion of the new en-
closed (air-pressurized) sections of the tube on top does not
change the mathematical nature of this solution. All they do is
make the restoring force larger. When the diameter of the tube is
uniform everywhere and the geometry is purely horizontal (i.e.,
no vertical tubes) and there is no water (so the action of gravity
is eliminated) the new problem reduces to the familiar forced
oscillations in a horizontal tube discussed in many scientific arti-
cles and textbooks (see, for example, Alexeev and Gutfinger,
2003; Goldshtein et al., 1996 and the references given therein). An-
other highly idealized circumstance is obtained in the free state
case (i.e., C1 = C2 = 0) when the tubes are not sealed (i.e. P̂ ¼ 0).
Here the new problem reduces to the familiar oscillations of grav-
ity waves (see e.g., Lamb, 1945).

3. The inviscid solution

In this no-viscosity limit represented by (1), the restoring force
is the only force available for accelerating the fluid. In contrast, we
shall see in Section 4 that, in the high viscosity limit, frictional
forces along the boundaries oppose it and can be so large that they
balance it altogether so that the fluid does not accelerate.

Assuming an inviscid solution of the form, g ¼ Am1 cos xtþ
Am2 sin xt, we get from (1),

Am1 ¼ C1=ðb�x2aÞ; Am2 ¼ C2=ðb�x2aÞ;

where a ¼ qAaðLvw þ LhwÞ; b ¼ 2qgAa þ 2P̂Aa=Lva.
We see that, regardless of the choices for the constants C1 and

C2 (representing the strength of the forcing), the amplitudes Am1

and Am2 go to infinity (i.e., resonance) when x2 = b/a. As in other
resonance cases, this frequency is also the frequency of the natural
oscillations, i.e., the frequency of the free state (C1 = C2 = 0). Just
Fig. 7. Schematic diagrams of the two examples given in the last part of Section 3. In the
the water in the open spring pool is shown. In this case, the distance between the two p
pockets is very small. In the second example (bottom), the pockets are 10 m deep and
examples are 4 and 6 s (respectively), periods comparable to the time elapsed between t
but it does mean that the conditions for resonance can be met in many caves.
like a swing is forced higher-and-higher when pushed at the same
frequency as its natural oscillation frequency, so are the oscilla-
tions in the U-tube.

Accordingly, the period of the forcing leading to a resonance is
found to be,

T ¼
ffiffiffi
2
p

p

g=ðLvw þ LhwÞ þ P̂ qLvaðLvw þ Lhw= Þ
n o1=2 : ð2Þ

When the forcing is at the above period, the pressure at the gas-
filled chambers, P̂ g=Lva (where P̂ is the undisturbed pressure), goes
to infinity (i.e. Am1 and Am2 become infinitely large). It is this infi-
nite increase in pressure that we argue might have caused the col-
lapse. Note that, practically, g ranges from almost zero in the
beginning of the resonance process to the full extent of the gas
pockets when resonant takes hold. For most Florida caves, this
maximum length might be as high as several meters.

We shall now consider two examples (Fig. 7) associated with
cave dimensions typical for caves in Florida. The first example
deals with the case where the ceiling of the cavern/cave is just be-
low the water elevation in the spring run (so that P̂ � 0, implying
that the pressure changes are negligible compared to gravity)
and the combined length of the cavern/cave and vertical tubes is
10 m. For these values, the period is about 4 s, which is of the same
order as the typical time elapsing between two consecutive
breaths of a typical diver. As a second example, suppose that the
cavern/cave ceiling is at 10 m depth, the height of the air-filled
chambers Lva, (which, as mentioned, are not necessarily fully, or
even partially, visible) is 5 m, and the combined length is 40 m. Un-
der such conditions, the period T is about 6 s, which is also compa-
rable to the time elapsing between two consecutive breaths. We
see, therefore, that the forcing period corresponding to resonance
first example (top), a cave whose air pockets are roughly at the same level as that of
ockets is 10 m and, due to the shallowness of the cavern, the initial pressure in the

the distance between the pockets is 40 m. The resonance periods for these two
wo diver’s breaths. This does not mean that every cave can be subject to resonance
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(i.e., the pressure in a typical cave becomes infinitely large) is com-
parable to the natural breathing period of divers in the cave. It is
hard to tell today where, relative to these two examples, the Indian
Spring was in 1991 because the pre-collapse ceilings then was not
the same as the ceiling today. However, it makes sense to assume
that it was somewhere between those two examples.

4. The deep cave limit

It is interesting to note that for deep caves satisfying P̂=qgLva �
1, the gravitational restoring force is negligible compared to that
exerted by the compressed gas in the chambers. This is because
the pressure in the cavities is so great that their associated restor-
ing force is much stronger than the gravitational pull. For example,
in a 50 m deep cave with 1 m long vertical air-filled cavities the
force of the compressed air is 50 times larger than the gravitational
pull. The resonance period in this case is short and for a 50 m long
tube, the period is about 1.5 s. When the length of the cavities is
short (Lva ? 0), the resonance period goes again to zero because
the pressure in the chambers is so large that the oscillations occur
instantly.

5. The high viscosity limit

Frictional problems in turbulent flows are hard to analyze and
solve for because the forces are nonlinear in the sense that they
are proportional to the square of the velocity, not the velocity itself.
For simplicity, we shall first consider the free state and focus on the
limit where the pressure gradient is entirely balanced by the fric-
tional forces. Namely, in contrast to the inviscid case where the
pressure gradient was entirely balanced by acceleration, in the
present case, the pressure gradient is entirely balanced by fric-
tional stresses along the boundaries of the tube and the accelera-
tion is zero. Here, once the height of the water on the right hand
side was disturbed and elevated an infinitesimal initial distance
ĝ, it will take the system infinitely long time to drain the excess
water on the right hand side. An oscillatory state will not be
reached because the frequency is infinitesimally small (i.e.,
T ?1). At each moment in time the pressure gradient will be bal-
anced by friction, which comes about through stresses long the
conduit walls. Even when the friction plays a much smaller role,
the resonant flow will still be altered. Under such conditions of
limited frictional influence, the resonant related flow (which needs
to be distinguished from the, much smaller, mean flow in the cave)
will gradually decrease until it reaches zero at T ?1.

Since even the relatively slow mean flow in most caverns and
caves is turbulent, it is expected that the, much faster, resonant re-
lated flow will surely be turbulent implying that there is no analyt-
ical solution even for the slowly varying frictional problem. (The
Reynolds number for a cave 3 m in diameter with a mean flow of
about 0.3 ms�1, is roughly 106 for a kinematic viscosity of
10�6 m2s�1. This is much larger than 2000 implying a strongly tur-
bulent regime.) There are various empirical formulas for calculat-
ing the variables in question, all of which assume that the
friction-induced energy loss is proportional to the square of the
velocity. One formula that one can use is the Manning formula,
which states that, in the free no-resonance case, the mean, slowly
varying, velocity in the tube is:

V ¼ 1
n

� �
ðDm=4Þ2=3½2g=ðLvw þ LhwÞ�1=2

; ð3Þ

where Dm is the mean diameter of the tube (DaLvw + DwLhw)/
(Lvw + Lhw). Here, Da, Dw are the diameters of the vertical and hori-
zontal tubes respectively and n is a frictional coefficient that is
�O(0.01) in metrical units. In the beginning of the process,
ĝ ¼ gð0Þ, the flow is maximal because the elevation is maximal. It
gradually diminishes in time and completely vanishes at T ?1.
Since the period in this limiting high-viscosity case is infinity, the
period of the forcing causing a resonance is infinity too.
6. Approximate frictional solution

The actual solution is somewhere in between the inviscid case
(i.e., all the restoring force is applied to the acceleration) and the
frictionally dominated case (i.e., the restoring force is completely
balanced by friction so the net force and the acceleration are both
zero). Namely, in reality, some of the restoring force will be applied
to acceleration and some to friction. There is no simple way to
determine the actual partitioning between the two but a reason-
able approach would be to assume an equal partitioning, namely,
to say that half of the restoring force is applied to the acceleration
and half is balanced by friction. This assumption implies that the
restoring force in (1) (i.e. the term proportional to g on its left side)
should be multiplied by ½, which yields the approximate frictional
solution,

T ¼ 2p

g ðLvw þ LhwÞ= þ P̂ qLaðLvw þ LhwÞ=
n o1=2 : ð4Þ

The difference between (4) and (2) is merely in the numerator
which now has an additional factor of

ffiffiffi
2
p
� 1:4. This means that

the two examples that we gave earlier in Section 3 (Fig. 7) are
slightly modified. The first gives a period of 4 s for a tube merely
7 m long (instead of 10 m) and the second gives 6 s for 28 m long
tube (instead of 40 m).
7. Summary and discussion

We presented a hypothesis regarding a new physical process in
water-filled caves regularly explored by open circuit [OC, to be dis-
tinguished from closed circuit, rebreather (RB) divers that do not
release bubbles] cave divers who release compressed gas into the
caves. The essence of the new mechanism is resonance induced
by the divers’ breathing apparatus, which expels compressed gas
with each breath. When the frequency of these breathes matches
the frequency of natural oscillations in the cave gas pockets, the
system is just like a swing pushed higher-and-higher when the
pushing occurs each time that the swing is in its highest position.
While the theory is clean and straightforward, its application to
real caves is not so simple due to the need to examine the behavior
of the gas pockets that might be partially embedded in the porous
medium. Nevertheless, the results are informative indicating the
possibility of resonance leading to very high pressures in the gas
pockets generated along the cave ceiling.

A few final comments should be made. First, note that a reso-
nant mechanical system involves the interplay of potential and ki-
netic energy, with the two being roughly constant over one
oscillation period. The amplitude of the resonant wave grows as
energy is supplied to the system. In our case, the energy source
is the compressed gas in the divers tanks that is exhaled in each
breath. (Work has to be done in order to fill the tanks under normal
atmospheric pressure.) That energy is not immediately available as
the diver exhales the gas because the pressure in the cave and the
divers lungs is hydrostatic. However, as the bubbles rise, they gain
kinetic energy in a similar fashion to the kinetic energy gained by a
falling ball. The bubbles containing the exhaled gas increase the
pressure in the capped chambers as they are forced into them by
rising from the diver lungs up to the concave cave ceiling above.
Namely, the resonance that we speak about is analogous to that
of a swing hit by a falling ball each time that it is in its highest po-
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sition. We expect that there will be some lateral bubbles motion
but most of this lateral motion will be due to curvature of the ceil-
ing rather than due to the flow in the cave. Regardless, when we
speak about the pockets, we speak about the final position of the
bubbles and it does not really matter how the bubbles get there.
The only aspect that the resonance requires is that the reso-
nance-inducing diver will be positioned in such away that hers/
his bubbles accumulate in one of the pockets.

Second, a comment needs to be made on the length of time re-
quired to excite the system to a state close to resonance. (This can
be calculated by dividing the total energy of the resonant oscilla-
tion by the rate of input of energy and is estimated to be several
minutes.) This time should be at least of the same order as the time
that a diver is present near the chambers. In the case in question,
postings in the blogs stated that there were OC divers ‘‘hanging
out” in the cavern area during the entire dive, particularly one di-
ver hanging out in one spot. Given that the periodicity is only sev-
eral seconds, the time involved was much larger, as required by the
resonance. Note that, because divers use a broad spectrum of
breathing rates, a single diver located near a tube resonating at
his/her breathing rate is more likely to produce resonance than a
group of divers. Namely, a group of divers will inevitably have di-
vers with a breathing rate that does not match the natural oscilla-
tion. This will throw the system out of resonance just as a swing is
thrown out of resonance when it is pushed at times other than
those corresponding to its maximum displacement. Note that the
two divers in question (Gavin and Parker) were much too far away
(from the collapsed region) for contributing to the collapse with
their own released gas, and that no divers in the cavern were on
rebreathers.

In this context, it is useful to examine the air chambers size
needed for our mechanism to work. Going back to our first exam-
ple at the end of Section 3 (Fig. 7), suppose that the diver releases
2 l of air with each breath and that he/she is at 10 m depth. Upon
rising to the cave ceiling, which, in this particular example, is just
below the surface, the bubbles occupy 4 l. Suppose now that the di-
ver stays around for 10 min during which she/he releases 150
breaths. This implies an increase of 0.6 cubic meters of air injected
into the pockets. Clearly, this is an enormous increase for many
pockets, whose initial pre-resonance size is often no more than
about a single cubic foot (0.027 m3).

A third comment should be made regarding the integrity of the
air chambers. Since the cave boundaries are porous, air does not re-
main within the cave forever but gradually escapes upward
through the porous medium. Evidently, this escape is often very
slow as one sees these air pockets in almost every cave dive so this
should not be an issue for the case in question. Finally, we will
probably never know for certain what happened on that tragic
day. Our findings do not by any means rule out the possibility of
important independent instabilities in the bedrock constituting
the ceiling of the cave. Such an instability (unrelated to the reso-
nance) could have certainly been the cause of the collapse. The sole
objective of the present analysis is to draw attention to the fact
that resonance is a strong possibility. Namely, the results that we
present here are informative indicating the possibility of resonance
leading to very high pressures in the air pockets generated along
the cave ceiling.

From a scientific point of view, this independent study needs to
be followed by a more detailed computational fluid dynamics
investigation that will take into account various details such as
the exact dimensions of the cave, the actual viscosity and the sur-
rounding rock’s porosity and structure. The same can be said of
laboratory experiments. While both should, in our opinion, be per-
formed later on, neither one corresponds to a trivial extension of
this study so both should be independent studies separated from
the present investigation. The long-term practical implications of
the present study is that it maybe necessary to classify caves
according to the risks of resonance, regulate diving there more
aggressively and perhaps even allow only rebreather diving (which
does not produce bubbles) in some of them.
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