Addendum 2: Correlations of VPM-B(2), RGBM, and GF
Gradients and Tensions

Compartment Gradients and Tensions are Tracked
Stop-by-Stop for 3 Alternative Ascents from a
120 min dive to 200 ft on Trimix 18/45

• This addendum tracks and compares gradients for ascents from 1 dive only: 120min at 200ft on 18/45. Alternative ascent tables for this dive are shown on page 49. VPM-B was at conservatism level (2), GAP RGBM and GF were at nominal conservatisms.

• Page 4 of the original slides notes that "TATs are closely related to comparative surfacing gradients." TATs were therefore used as convenient 1-point summaries of correlations of VPM-B to GAP RGBM and GF schedules.

• A more detailed comparison of compartment gradients and tensions requires analysis of many more data points for each ascent. Essentially, the TAT data summarized by the two red-colored points on the two plots on page 22 have been expanded into 12 plots each, with 16 points per plot, shown on pages 55 and 57.

• Correlation plots for times at each stop and stair-step profiles are shown in the lower right-hand charts on pages 18 and 19 for VPM-B(2) vs. RGBM, and on page 20, and 21 for VPM-B(2) vs. GF.

Organization

• Original Slides VPM-B vs GAP RGBM and GF Slides (pages 1-38)
 VPM-Bv3.2_vs_GAP_RGBM_and_GF_200ft_3mix1845_Dives.pdf

• Addendum 1 HSE RGBM vs. GAP RGBM (pages 39-46)
 HSE_vs_GAP_RGBM_200ft_3mix1845_Dives.pdf

• Addendum 2 (pages 47-57)
 TandG_VPMB_vs_GAP_RGBM_and_GF_200ft_3mix1845.pdf

Eric Maiken 2004 Limited Distribution
Notations and Conventions

Gradients and Tensions were calculated as functions of time from ascent schedules generated by V-Planner and GAP decompression models.

Profiles

- The ascent schedules calculated by V-Planner and GAP software, shown on page 49, were used to calculate compartment tensions and gradients in a custom Mathematica program.
- If you really want details, then review all of the modeling assumptions (such as compartment half-times, partial pressure of H2O, etc.) in the open source code of the obsolete Mathematica VPM program at my website: http://www.decompression.org/maiken/VM/multigas_vpm.htm

Plots

- Both compartment tensions (T) and gradients (G) are considered, even though the information is redundant. Although tensions are conventional, gradients are more closely related to physical and physiological processes.
- Compartments are labeled according to Buhlmann's ZHL-16 Nitrogen half-times. Conventionally, Helium half-times are scaled by the ratio of the two gas's diffusivities. This is physically inconsistent with the idea that compartments represent time-scales for perfusion. Just another deco model inconsistency!

Discussion of Correlation Plots

- VPM-B(2) and RGBM Ts and Gs, shown on pages 54 and 55, are much more nearly correlated than VPM-B(2) and GF Ts and Gs, shown on pages 56 and 57.
- VPM-B(2) and RGBM Gs and Ts are 1:1 correlated for compartments ranging from the slowest (635 min), to the controlling compartment (a point near plot's upper right-hand corner).
- RGBM fast compartment Gs and Ts are lower than VPM-B(2) for the deepest stops, nonetheless, RGBM Gs and Ts are greater than either VPM-B(2) and GF from 30ft up to the surface.
- Slide 5 discusses the general (ie: applies to all 200ft dives) operational factors that lead to larger surfacing gradients for RGBM compared to VPM-B(2) and GF.
- GF surfacing Gs and Ts are much less than VPM-B(2) and RGBM, but GF TATs are 138 mins longer than VPM-B(2) and RGBM (which are virtually identical at ~356 min TAT).
Ascent Schedules

For reference, the depths, run times, and gas oxygen and nitrogen fractions are tabulated for the three alternative ascent models. Stair-step plots of the ascents are shown in the lower right-hand plots of slides 18 and 20.

<table>
<thead>
<tr>
<th>VPM-B(2)</th>
<th>RGBM(N)</th>
<th>GF(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft</td>
<td>min</td>
<td>fO_2 / fN_2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.21 / 0.79</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>200</td>
<td>120</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>167</td>
<td>121</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>134</td>
<td>122</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>120</td>
<td>127</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>110</td>
<td>133</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>100</td>
<td>141</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>90</td>
<td>151</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>80</td>
<td>166</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>70</td>
<td>174</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>60</td>
<td>185</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>40</td>
<td>221</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>30</td>
<td>252</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>20</td>
<td>290</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>10</td>
<td>356</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>0</td>
<td>474</td>
<td>0.18 / 0.37</td>
</tr>
<tr>
<td>0</td>
<td>611</td>
<td>0.18 / 0.37</td>
</tr>
</tbody>
</table>
Notes on Reading Tension Plots

Saturation Tension at Surface
\[T_0 = (1 - (p_{H_2O} + p_{CO_2})) \times 0.79 \]

Ascent to 1st stop
Switch to O₂ at 20 ft rapidly reduces tensions in fast compartments (to 0 for the fastest)
Sea level pressure

Ascent to surface
Switch to Nitrox 50% at 70 ft rapidly reduces tensions in fast compartments

Fastest Compartments
In-gas 78% N₂ + 1% Ar at surface after desaturation by O₂ at 20 and 10 ft stops
Saturation Tension at Surface

Slow compartments out-gas after surfacing

Fastest Compartment

120 min TAT 90 min

120 min

Slowest Compartment

635 min

Fastest Compartment

4 min
Notes on Reading Gradient Plots

Compartment Gradients vs. Time

- Fastest compartments control deepest stops
- Slowest compartments drive bubble growth after surfacing
- Negative surface saturation gradient
- Ascent to surface
- Switch to O₂ at 20 ft rapidly reduces gradients in fast compartments
- Switch to Nitrox 50% at 70 ft rapidly reduces gradients in fast compartments
- Ascent to 1st stop

Graphical annotations:
- +G supports bubble growth
- -G drives bubble dissolution

Key times:
- 120 min
- TAT
- 90 min
- 635 min
- 4 min

Legend:
- Slowest Compartment
- Fastest Compartment
Plots of Tensions and Gradients vs. Run Time

VPM-B (2)

Total Compartment Tensions vs. Time

Compartment Gradients vs. Time

RGBM

Total Compartment Tensions vs. Time

Compartment Gradients vs. Time

Gradient Factor

Total Compartment Tensions vs. Time

Compartment Gradients vs. Time

Note horizontal scale change

Eric Maiken 2004 Limited Distribution
Construction of Tension and Gradient Correlation Plots

Example: Comparative Tensions at end of 120 ft stop

3 example points corresponding to total tensions ($T_{\text{Total}} = T_{N_2} + T_{He}$) in compartments representing 635 min, 38.3 min, and 4 min N_2 Bhulmann ZHL-16 compartments.

1-to-1 correlation line. Points above the line have larger RGBM Tensions. Points below the line have larger VPM tensions.

Plot RGBM tensions as Y components for end of 120 ft Stop

Plot VPM tensions, just like the RGBM illustration, as X components for end of 120 ft Stop

Eric Maiken 2004 Limited Distribution
Stop-by-Stop Correlation Plots of RGBM vs. VPM-B(2) Tensions

RGBM vs. VPM-B Compartment Tensions at End of Each Decompression Stop on Ascent from 120 min Dive to 200 feet

Eric Maiken 2004 Limited Distribution
Stop-by-Stop Correlation Plots of RGBM vs. VPM-B(2) Gradients

RGBM vs. VPM–B Compartment Gradients at End of Each Decompression Stop on Ascent from 120 min Dive to 200 feet

Eric Maiken 2004 Limited Distribution
Stop-by-Stop Correlation Plots of GF vs. VPM-B(2) Tensions

GF vs. VPM–B Compartment Tensions at End of Each Decompression Stop
on Ascent from 120 min Dive to 200. feet

Eric Maiken 2004 Limited Distribution
Stop-by-Stop Correlation Plots of GF vs. VPM-B(2) Gradients

GF vs. VPM–B Compartment Gradients at End of Each Decompression Stop on Ascent from 120 min Dive to 200 feet

Eric Maiken 2004 Limited Distribution